Skip to contents

Example dataset

Acute inflammation

acuteInflammation
Measurement of 22 inflammatory mediators across time

Quick start

Functions designed for graphical or automated analysis

santaR-package santaR SANTAR
santaR: A package for Short AsyNchronous Time-series Analysis in R
santaR_start_GUI()
santaR Graphical User Interface
santaR_auto_fit()
Automate all steps of santaR fitting, Confidence bands estimation and p-values calculation for one or multiple variables
santaR_auto_summary()
Summarise, report and save the results of a santaR analysis
santaR_plot()
Plot a SANTAObj

Exported Functions

Functions exported by santaR

santaR_fit()
Generate a SANTAObj for a variable
santaR_CBand()
Compute Group Mean Curve Confidence Bands
santaR_pvalue_dist()
Evaluate difference in group trajectories based on the comparison of distance between group mean curves
santaR_pvalue_fit()
Evaluate difference in group trajectories based on the comparison of model fit (F-test) between one and two groups
santaR_pvalue_dist_within()
Evaluate difference between a group mean curve and a constant model
santaR_pvalue_fit_within()
Evaluate difference between a group mean curve and a constant model using the comparison of model fit (F-test)

Internals

Internal functions and helpers

AICc_smooth_spline()
Calculate the Akaike Information Criterion Corrected for small observation numbers for a smooth.spline
AIC_smooth_spline()
Calculate the Akaike Information Criterion for a smooth.spline
BIC_smooth_spline()
Calculate the Bayesian Information Criterion for a smooth.spline
get_eigen_DF()
Compute the optimal df and weighted-df using 5 spline fitting metric
get_eigen_DFoverlay_list()
Plot for each eigenSpline the automatically fitted spline, splines for all df and a spline at a chosen df
get_eigen_spline()
Compute eigenSplines across a dataset
get_eigen_spline_matrix()
Generate a Ind x Time + Var data.frame concatenating all variables from input variable
get_grouping()
Generate a matrix of group membership for all individuals
get_ind_time_matrix()
Generate a Ind x Time DataFrame from input data
get_param_evolution()
Compute the value of different fitting metrics over all possible df for each eigenSpline
loglik_smooth_spline()
Calculate the penalised loglikelihood of a smooth.spline
plot_nbTP_histogram()
Plot an histogram of the number of time-trajectories with a given number of time-points
plot_param_evolution()
Plot the evolution of different fitting parameters across all possible df for each eigenSpline
scaling_mean()
Mean scaling of each column
scaling_UV()
Unit-Variance scaling of each column