Function reference
-
acuteInflammation
- Measurement of 22 inflammatory mediators across time
-
santaR-package
santaR
SANTAR
- santaR: A package for Short AsyNchronous Time-series Analysis in R
-
santaR_start_GUI()
- santaR Graphical User Interface
-
santaR_auto_fit()
- Automate all steps of santaR fitting, Confidence bands estimation and p-values calculation for one or multiple variables
-
santaR_auto_summary()
- Summarise, report and save the results of a santaR analysis
-
santaR_plot()
- Plot a SANTAObj
-
santaR_fit()
- Generate a SANTAObj for a variable
-
santaR_CBand()
- Compute Group Mean Curve Confidence Bands
-
santaR_pvalue_dist()
- Evaluate difference in group trajectories based on the comparison of distance between group mean curves
-
santaR_pvalue_fit()
- Evaluate difference in group trajectories based on the comparison of model fit (F-test) between one and two groups
-
santaR_pvalue_dist_within()
- Evaluate difference between a group mean curve and a constant model
-
santaR_pvalue_fit_within()
- Evaluate difference between a group mean curve and a constant model using the comparison of model fit (F-test)
-
AICc_smooth_spline()
- Calculate the Akaike Information Criterion Corrected for small observation numbers for a smooth.spline
-
AIC_smooth_spline()
- Calculate the Akaike Information Criterion for a smooth.spline
-
BIC_smooth_spline()
- Calculate the Bayesian Information Criterion for a smooth.spline
-
get_eigen_DF()
- Compute the optimal df and weighted-df using 5 spline fitting metric
-
get_eigen_DFoverlay_list()
- Plot for each eigenSpline the automatically fitted spline, splines for all df and a spline at a chosen df
-
get_eigen_spline()
- Compute eigenSplines across a dataset
-
get_eigen_spline_matrix()
- Generate a Ind x Time + Var data.frame concatenating all variables from input variable
-
get_grouping()
- Generate a matrix of group membership for all individuals
-
get_ind_time_matrix()
- Generate a Ind x Time DataFrame from input data
-
get_param_evolution()
- Compute the value of different fitting metrics over all possible df for each eigenSpline
-
loglik_smooth_spline()
- Calculate the penalised loglikelihood of a smooth.spline
-
plot_nbTP_histogram()
- Plot an histogram of the number of time-trajectories with a given number of time-points
-
plot_param_evolution()
- Plot the evolution of different fitting parameters across all possible df for each eigenSpline
-
scaling_mean()
- Mean scaling of each column
-
scaling_UV()
- Unit-Variance scaling of each column