Function reference
-
acuteInflammation - Measurement of 22 inflammatory mediators across time
-
santaR-packagesantaRSANTAR - santaR: A package for Short AsyNchronous Time-series Analysis in R
-
santaR_start_GUI() - santaR Graphical User Interface
-
santaR_auto_fit() - Automate all steps of santaR fitting, Confidence bands estimation and p-values calculation for one or multiple variables
-
santaR_auto_summary() - Summarise, report and save the results of a santaR analysis
-
santaR_plot() - Plot a SANTAObj
-
santaR_fit() - Generate a SANTAObj for a variable
-
santaR_CBand() - Compute Group Mean Curve Confidence Bands
-
santaR_pvalue_dist() - Evaluate difference in group trajectories based on the comparison of distance between group mean curves
-
santaR_pvalue_fit() - Evaluate difference in group trajectories based on the comparison of model fit (F-test) between one and two groups
-
santaR_pvalue_dist_within() - Evaluate difference between a group mean curve and a constant model
-
santaR_pvalue_fit_within() - Evaluate difference between a group mean curve and a constant model using the comparison of model fit (F-test)
-
AICc_smooth_spline() - Calculate the Akaike Information Criterion Corrected for small observation numbers for a smooth.spline
-
AIC_smooth_spline() - Calculate the Akaike Information Criterion for a smooth.spline
-
BIC_smooth_spline() - Calculate the Bayesian Information Criterion for a smooth.spline
-
get_eigen_DF() - Compute the optimal df and weighted-df using 5 spline fitting metric
-
get_eigen_DFoverlay_list() - Plot for each eigenSpline the automatically fitted spline, splines for all df and a spline at a chosen df
-
get_eigen_spline() - Compute eigenSplines across a dataset
-
get_eigen_spline_matrix() - Generate a Ind x Time + Var data.frame concatenating all variables from input variable
-
get_grouping() - Generate a matrix of group membership for all individuals
-
get_ind_time_matrix() - Generate a Ind x Time DataFrame from input data
-
get_param_evolution() - Compute the value of different fitting metrics over all possible df for each eigenSpline
-
loglik_smooth_spline() - Calculate the penalised loglikelihood of a smooth.spline
-
plot_nbTP_histogram() - Plot an histogram of the number of time-trajectories with a given number of time-points
-
plot_param_evolution() - Plot the evolution of different fitting parameters across all possible df for each eigenSpline
-
scaling_mean() - Mean scaling of each column
-
scaling_UV() - Unit-Variance scaling of each column