Plot the evolution of different fitting parameters across all possible df for each eigenSpline
Source:R/df_search.R
plot_param_evolution.Rd
Plot the evolution of 5 different fitting metrics (CV: Cross-Validation, GCV: Generalised Cross-Validation, AIC: Akaike Information Criterion, BIC: Bayesian Information Criterion, AICc: Akaike Information Criterion Corrected for small sample size) over all possible df for each eigenSpline generated by get_param_evolution
.
Arguments
- paramSpace
A list of n matrices (n being the number or eigenSplines) as generated by
plot_param_evolution
. Each matrix of fitting parameters has as rows different fitting metrics, as columns different df values.- scaled
(bool) If TRUE, the value of each eigenSpline fitting parameter are scaled between 0 and 1. Default is TRUE.
Value
A list of ggplot2
plotObjects, one plot per fitting parameters. All results can be plotted using do.call(grid.arrange, returnedResult)
See also
Graphical implementation with santaR_start_GUI
Other DFsearch:
get_eigen_DF()
,
get_eigen_DFoverlay_list()
,
get_eigen_spline()
,
get_param_evolution()
,
plot_nbTP_histogram()
Examples
## 8 subjects, 4 time-points, 3 variables
inputData <- acuteInflammation$data[0:32,1:3]
ind <- acuteInflammation$meta$ind[0:32]
time <- acuteInflammation$meta$time[0:32]
eigen <- get_eigen_spline(inputData, ind, time, nPC=NA, scaling="scaling_UV",
method="nipals", verbose=TRUE, centering=TRUE, ncores=0)
#> nipals calculated PCA
#> Importance of component(s):
#> PC1 PC2 PC3
#> R2 0.9272 0.06606 0.006756
#> Cumulative R2 0.9272 0.99324 1.000000
#> total time: 0.01 secs
paramSpace <- get_param_evolution(eigen, step=0.25)
plotList <- plot_param_evolution(paramSpace, scaled=TRUE)
plotList[1]
#> [[1]]
#>
#do.call(grid.arrange, plotList )