Generate a Ind x Time + Var data.frame concatenating all variables from input variable
Source:R/df_search.R
get_eigen_spline_matrix.Rd
Generate Ind x Time data.frame
for each variable using get_ind_time_matrix
and then concatenate all variables rowise. Resulting data.frame
contrain Time as columns and Individuals and Variables as rows. Pairs of Individual and Timepoint without a measurement are left as NA. If ncore!=0 the function is parallelised, however the parallelisation overhead cost is high if not required.
Arguments
- inputData
data.frame
of measurements with observations as rows and variables as columns- ind
Vector of subject identifier (individual) corresponding to each measurement
- time
Vector of time corresponding to each measurement
- ncores
(int) Number of cores to use for parallelisation. Default 0 for no parallelisation.
Value
data.frame
of measurements for each IND x TIME + VAR. Rows are unique Individual IDs per variable, and columns unique measurement Time. Pairs of (IND,TIME+VAR) without a measurement are left as NA.
Examples
if (FALSE) {
## 6 measurements, 3 subjects, 3 unique time-points, 2 variables
inputData <- matrix(c(1,2,3,4,5,6, 7,8,9,10,11,12), ncol=2)
ind <- c('ind_1','ind_1','ind_1','ind_2','ind_2','ind_3')
time <- c(0,5,10,0,10,5)
get_eigen_spline_matrix(inputData, ind, time, ncores=0)
# 0 5 10
# 1 1 2 3
# 2 4 NA 5
# 3 NA 6 NA
# 4 7 8 9
# 5 10 NA 11
# 6 NA 12 NA
}